

WA105979

INSTITUTE REPORT NO. 105

THE MUTAGENIC POTENTIAL OF:

- 4-nitrophenyl 4-chlorophenyl (methyl) phosphinate
- 4-nitrophenyl bis (chloromethyl) phosphinate
- 4-nitrophenyl phenyl (trichloromethyl) phosphinate
- 4-nitrophenyl ditrophenyl dichloromethyl (phenyl) phosphinate

LEONARD J. SAUERS, BA, SP5
FREDDICA R. PULLIAM, BS, SSG
and
JOHN T. FRUIN, DVM, PhD, LTC VC

TOXICOLOGY GROUP,
DIVISION OF RESEARCH SUPPORT

^

This document has been approved for public release and sale; its distribution is unlimited.

SEPTEMBER 1981

Toxicology Series 18

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO CALIFORNIA 94129

Toxicology Series 18

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, Letterman Army Institute of Research, Presidio of San Francisco, California 94129. However, the Defense Technical Information Center is authorized to reproduce the document for United States Government purposes.

Destroy this report when it is no longer needed. Do not return it to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

> This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

> > John Marshall & Sand SI
> > (Signature and date)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS BEFORE COMPLETING FORM
RECIPIENT'S CATALOG NUMBER
<u> </u>
TYPE OF REPORT & PERIOD GOVERED
Final PEPT,
Jun e 1907 - Sep tember 19 81
PERFORMING ORG. REPORT HUMBER
B. CONTRACT OR GRANT NUMBER(e)
B. CONTRACT OR GRANT NUMBER(*)
16) 354 62772 1 27
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Project 3516772A875
WU 304
REPORT DATE
Sep tember 19 81
13. NUMBER OF PAGES
40 (12,)
15. SECURITY CLASS, (of this report)
UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
D.
D.
4-chlorophenyl(methyl) nate; 4-nitrophenyl phenyl
4-chlorophenyl(methyl) nate; 4-nitrophenyl phenyl

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

ABSTRACT

The mutagenic potential of 4-nitrophenyl 4-chlorophenyl(methyl)phosphinate (47-B*); 4-nitrophenyl bis(chloromethyl)phosphinate (16*); 4-nitrophenyl phenyl(trichloromethyl)phosphinate (51*); 4-nitrophenyl ditrophenyl dichloromethyl(phenyl)phosphinate (77*) was assessed by using the Ames Salmonella/Mammalian Microsome Mutagenicity Assay. Tester strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 were exposed to doses ranging from 1 mg/plate to 3.2 x 10-4 mg/plate. It was determined that none of the tested substances had mutagenic potential.

* Code number for compound.

	4
Accordion For NTIS CTIAL DTIC TAB Unannounced	-4 -
Justification B Distribution/	1
Availability Codes Avail and/or Dict Special	1
	ļ

PREFACE

AMES ASSAY REPORT:

SUBSTANCE		CODE NO.				
4-nitrophe 4-nitrophe	4-nitrophenyl 4-chlorophenyl(methyl)phosphinate 47-B 4-nitrophenyl bis(chloromethyl)phosphinate 16 4-nitrophenyl phenyl(trichloromethyl)phosphinate 51 4-nitrophenyl ditrophenyl dichloromethyl(phenyl)phosphinate 77					
TESTING FA	CILITY: Letterman Army Institute of Research Presidio of San Francisco, CA 94129	1				
SPONSOR:	Biomedical Laboratory, Aberdeen Proving Groun Aberdeen, MD 21005	nd s				
PROJECT:	Toxicity Testing of Phosphinate Compounds - 3	35162772A875				
GLP STUDY	NUMBER: 81015					
	CTOR: LTC John T. Fruin D.V.M.,PhD. AL INVESTIGATORS: SSG Freddica R. Pulliam, N SP5 Leonard J. Sauers, B.					
RAW DATA:	A copy of the final report, study protocol a will be maintained in the LAIR archives. To were provided by sponsor. Chemical, analyte purity, etc. data are available from the sponsor.	est substances ical, stability,				
PURPOSE:	To determine the mutagenic potential of the using the Ames Assay. Tester strains TA 98, 1535, TA 1537, and TA 1538 were used.					

ACKNOWLEDGMENTS

The authors wish to thank John Dacey and SP4 Larry Mullen, BS for their assistance in performing the research and for help in preparation of this report.

Signatures of Principal Scientists Involved in the Study

We, the undersigned, believe the study, GLP number 81015, described in this report to be scientifically sound and the results and interpretation to be valid. The study was conducted to comply to the best of our ability with the Good Laboratory Practice Regulations outlined by the Food and Drug Administration.

FREDDICA R. PHLLIAM, BS. Date

SSG

Co-Investigator

JOHN T. FRUIN, DVM, PhD

LTC, VC

Study Director

LEONARD J. SAUERS, BA

SP5

Co-Investigator

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESLARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

REPLY TO ATTENTION OF:

SGRD-ULZ-QA

3 September 1981

MEMORANDUM FOR RECORD

SUBJECT: Report of GLP Compliance

I hereby certify that in relation to LAIR GLP study 81015 the following inspection was made:

5 Jun 81

Routine inspections with no adverse findings are reported quarterly, thus these inspections are also included in the July 1981 report to management and the Study Director.

JOHN C. JOHNSON

CPT, MS

Quality Assurance Officer

TABLE OF CONTENTS

Abstracti
Prefaceiii
Acknowledgmentsiv
Signatures of Principal Scientistsv
Report of Quality Assurance Unitvi
Table of Contentsvii
BODY OF REPORT
INTRODUCTION
Rationale for using the Ames Assay
Description of Test, Rationale for strain selectionl
Description of Strains, History, Methods, and Data2
METHODS
Rationale for Dosage Levels and Response Tabulations3
Test Format3
Statistical Analysis4
RESULTS AND DISCUSSION4
CONCLUSION5
RECOMMENDATION6
REFERENCES7
APPENDIX (Tables 1 through 6)9
DISTRIBUTION LIST

Rationale for using the Ames Assay

The Ames Salmonella/Mammalian Microsome Mutagenicity Test is one of a standard bank of tests used by our laboratory for the assessment of the mutagenic potential of a test substance. It is a short-term screening assay for the prediction of potential mutagenic agents in mammals. It is inexpensive when compared to in vivo tests, yet is highly predictive and reliable in its ability to detect mutagenic activity and therefore carcinogenic probability (1). It relies on basic genetic principles and allows for the incorporation of a mammalian microsome enzyme system to increase sensitivity through enzymatically altering the test substance into an active metabolite. It has proven highly effective in assessing human risk (1).

Description of Test (Rationale for the selection of strains)

The test was developed by Bruce Ames, Ph.D. from the University of California-Berkeley. The test involves the use of several different genetically altered strains of Salmonella typhimurium, each with a specific mutation in the histidine operon (2). The test substance demonstrates mutagenic potential if it is able to revert the mutation in the bacterial histidine operon back to the wild type and thus reestablish prototrophic growth within the test strain. This reversion also can occur spontaneously due to a random mutational event. If, after adding a test substance, the number of revertants is significantly greater than the spontaneous reversion rate, then the test substance physically altered the locus involved in the operon's mutation and is able to induce point mutations and genetic damage (2).

In order to increase the sensitivity of the test system, two other mutations in the Salmonella are used (2). To insure a higher probability of uptake of test substance, the genome for the lipopolysacchride layer (LP) is mutated and allows larger molecules to enter the bacteria. Each strain has another induced mutation which causes loss of excision repair mechanisms. Since many chemicals are not by themselves mutagenic but have to be activated by an enzymatic process, a mammalian microsome system is incorporated. These microsomal enzymes are obtained from livers of rats induced with Aroclor 1254; the enzymes allow for the expression of the metabolites in the mammalian system. This activated rat liver microsomal enzyme homogenate is termed S-9.

Description of Strains (History of the strains used, methods to monitor the integrity of the organisms, and data pertaining to current and historical controls and spontaneous reversion rates)

The test consists of using five different strains of Salmonella typhimurium that are unable to grow in absence of histidine because of a specific mutation in the histidine operon. This histidine requirement is verified by attempting to grow the tester strains on minimal glucose agar (MGA) plates, both with and without histidine. The dependence on this amino acid is shown when growth occurs only in its presence. The plasmids in strains TA 98 and TA 100 contain an ampicillin resistant R factor. Strains deficient in this plasmid demonstrate a zone of growth inhibition around an ampicillin impregnated disc. The alteration of the LP layer allows uptake by the Salmonella of larger molecules. If a crystal violet impregnated disc is placed onto a plate containing any one of the bacterial strains, a zone of growth inhibition will occur because the LP layer The absence of excision repair mechanisms can be is altered. by using ultraviolet (UV) light. These mechanisms determined function primarily by repairing photodimers between pyrimidine bases; exposure of bacteria to UV light will activate the formation of these dimers and cause cell lethality, since excision of these photodimers can not be made. The genetic mutation resulting in UV sensitivity also induces a dependence by the Salmonella to biotin. this vitamin must be added. In order to prove that the bacteria are responsive to the mutation process, positive controls are run with known mutagens. If after exposure to the positive control substance, a larger number of revertants are obtained, then the bacteria are adequately responsive. Sterility controls are performed to determine the presence of contamination. Sterility of the test compound is also confirmed in each first dilution. Verification of the tester strains occurs spontaneously with the running of each assay. value of the spontaneous reversion rate is obtained using the same inoculum of bacteria that is used in the assay (3).

Strains were obtained directly from Dr. Ames, University of California, Berkeley, propagated and then maintained at -80 C in our laboratory. Before any substance was tested, quality controls were run on the bacterial strains to establish the validity of their special features and also to determine the spontaneous reversion rate (2). Records are maintained of all the data, to determine if deviations from the set trends have occurred.

We compared the spontaneous reversion values with our own historical values and those cited by Ames et al (2). Our conclusions are based on the spontaneous reversion rate compared to the experimentally induced rate of mutation. When operating effectively, these strains detect substances that cause base pair

mutations (TA 1535, TA 100) and frameshift mutations (TA 1537, TA 1538 and TA 98) (2).

METHODS (3)

Rationale for Dosage Levels and Dose Response Tabulations

To insure readable and reliable results, a sublethal concentration of the test substance had to be determined. toxicity level was found by using MGA plages, various concentrations of the substance, and approximately 10° cells of TA 100 per plate, unless otherwise specified. Top agar containing trace amounts of histidine and biotin were placed on MGA plates. TA 100 is used because it is the most sensitive strain. Strain verification was on the bacteria, along with a determination of the spontaneous reversion rate. After incubation, the growth was observed on the plates. (The auxotrophic Salmonella will replicate a times and potentially express a mutation. When the histidine biotin supplies are exhausted, only those bacteria that reverted the prototrophic phenotype will continue to reproduce and form macrocolonies; the remainder of the bacteria comprises the background lawn. The minimum toxic level is defined as the lowest serial dilution which decreased macrocolony formation, below that of the revertant rate, and an observable reduction in the density of the background lawn occurs.) A maximum dose of 1 mg/plate is used when no toxicity is observed. The densities were recorded as normal slight, and no growth.

Test Format

After we validated our bacterial strains and determined the optimal dosage of the test substance, we began the Ames Assay. the g actual experiment, 0.1ml of the particular strain of Salmonella cells) and the specific dilutions of the test substance were added to 2 ml of molten top agar, which contained trace amounts of histidine and biotin. Since survival is better from cultures which have just passed the log phase, the Salmonella strains were used 16 hours (maximum) after initial inoculation into nutrient broth. The dose of the test substance spanned more than a 1000- fold, decreasing from the minimum toxic level by a dilution factor of 5. All the substances were tested with and without S-9 microsome fraction. S-9 mixture which was previously titered at an optimal strength was added to the molten top agar. After all the ingredients were added, the top agar was vortexed, then overlayered on minimum glucose agar plates. These plates contained 2% glucose and Vogel Bonner "E" Concentrate (4). The water used in this medium and all reagents came from a polymetric system. Plates were incubated, upside down in the dark at 37 C for 48 hours. Plates were prepared in triplicate and the average revertant counts were recorded. The corresponding number

of revertants obtained was compared to the number of spontaneous revertants; the conclusions were recorded statistically. A correlated dose response is considered necessary to declare a substance as a mutagen. Commoner (5), in his report, "Reliablilty of Bacterial Mutagenesis Techniques to Distinguish Carcinogenic and Non-Carcinogenic Chemical," and McCann et al (1) in their paper, "Detection of Carcinogens as Mutagen: Assay of over 300 Chemicals," have concurred on the test's ability to detect mutagenic potential.

Statistical Analysis

Quantitative evaluation was ascertained by two independent methods. Ames et al (2) assumed that a compound which caused twice the spontaneous reversion rate is mutagenic. Commoner (5), developed the MUTAR Ratio, which is stated in the following equation:

$$MUTAR = (E - C)/C_{AV}$$

Here, C is the number of spontaneous revertant colonies on control plates obtained on the same day and with the same treatment and strains. E is the number of revertants in response to the compound; $^{\rm C}_{\rm AV}$ is the number of spontaneous revertants on control plates calculated from historical records. The explanation of the results of this equation can be determined by the method of Commoner (5). This variation determines the probability of correctly classifying substances as carcinogens on the basis of their mutagenic activity. The E values were recorded by strain, with and without S-9. Values for C and $^{\rm C}_{\rm AV}$ were recorded separately.

We used the formula and logged all values for our permanent records.

RESULTS AND DISCUSSION

Throughout this report, each of the test substances will be referred to by the respective code number:

	Substance C	ode No.
4-nitrophenyl	4-chlorophenyl(methyl)phosphinate	47-B
4-nitrophenyl	bis(chloromethyl)phosphinate	16
4-nitrophenyl	phenyl(trichloromethyl)phosphinate	51
4-nitrophenyl	ditrophenyl dichloromethyl(phenyl)phosphinat	e 77

On 3 June 1981, the Toxicity Level Determination was performed on the 4 test chemicals. All sterility, positive, and negative controls for this experiment were normal (Table 1). At the highest dose used, 1.0 mg/plate, no toxicity was observed (Tables 2A-2D).

On 21 June 1981, the Ames Assay was performed using the 4 test substances. For this experiment, all sterility and strain verification controls were normal (Table 3). Expected results were observed for all negative controls, except for the response of TA 98 and TA 1538 to dimethyl benzanthracene (DMBA). These 2 bacterial strains reacted as expected to all other positive control chemicals (Table 4).

For compound 77, isolated incidences of mutagenicity were observed for activated TA 98 at the 0.04 mg/plate level, nonactivated TA 1537 at the 1 mg/plate 0.2 mg/plate and 0.0016 mg/plate levels, and non-activated TA 1538 at the 1 mg/plate dose. No dose response was observed (Table 5A).

Compound 51 showed a numerical suggestion of mutagenic potential at the 0.00032 mg/plate level for nonactivated TA 1537. No dose response was observed (Table 5B).

Compound 16 showed a more than doubling of the spontaneous reversion rate for nonactivated TA 1538 at the initial dose. A no growth response for 4 of 5 strains was observed at the 0.008 mg/plate dose with S-9. Since no pertinent mutagenicity was apparent, these values were not necessary to verify a correlated dose response (Table 5C).

Compound 47B showed a mutagenic response only for activated TA 98 at the 0.00032 mg/plate level (Table 5D).

CONCLUSION

The results show several isolated incidences of a doubling of the spontaneous reversion rate. It is in the opinion of the Ames Assay Laboratory at the University of California-Berkeley, that even though a doubling did occur, one cannot declare mutagenicity unless an obvious dose response is seen (D. Maron, Ames Assay Laboratory, University of California, Berkeley, personal communication 30 March 1981). Therefore on the basis of the Ames Assay, Compounds 47-B, 16, 51, and 77 are not mutagenic at the levels tested.

RECOMMENDATION

We recommend that organophosphinate compounds 47-B, 16, 51, and 77 be tested using other toxicological testing systems if efficacy tests show those chemicals to be promising antidotes.

REFERENCES

- McCANN, J., E. CHOI, E. YAMASAKI, and B. N. AMES. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc Nat Acad Sci, USA 72:5135-5139, 1975
- 2. AMES, B. N., J. McCANN and E. YAMASAKI. Methods for detection carcinogens and mutagens with Salmonella/mammalian microsome mutagenicity test. Mutation Res 31: 347-364, 1975
- 3. LAIR SOP OP-STX-1, Ames Salmonella/mammalian microsome mutagenicity test, 1 March 1981
- 4. VOGEL, H. J. and D. M. BONNER. Acetylornithinase of E. coli: Partial purification and same properties. J Biol Chem 218: 97-106, 1956
- 5. COMMONER, B. Reliability of the bacterial mutagenesis techniques to distinguish carcinogenic and non-carcinogenic chemicals. EPA 600/1 76-022, 1976

LIST OF TABLES

	Code	Page
Table 1 Strain Verification for Toxicity Level Determination		11
Table 2A Toxicity Level Determination	77	12
Table 2B Toxicity Level Determination	51	13
Table 2C Toxicity Level Determination	16	14
Table 2D Toxicity Level Determination	47-B	15
Table 3 Strain Verification and Sterility Controls		16
Table 4 Positive and Negative Controls		17
Table 5A Ames Assay Worksheet	77	18
Table 5B Ames Assay Worksheet	51	20
Table 5C Ames Assay Worksheet	16	22
Table 5D Ames Assay Worksheet	47-B	24
Table 6A Mutagenic Activity Ratio	77	26
Table 6B Mutagenic Activity Ratio	51	27
Table 6C Mutagenic Activity Ratio	16	28
Table 6D Mutagenic Activity Ratio	47-B	29

APPENDIX

TABLE 1
STRAIN VERIFICATION FOR TOXICITY LEVEL DETERMINATION
Salmonella/Microsome Assay

Histidine Requirements	Ampicillin Resistance	uvr-B Deletion	rfa Crystal Violet	Sterility Control	Response (a)
NG	G	NG	14.15 mm	NG	+
NA	NG	iλΑ	16.12 mm	NG	+
G	NA	G	NA	NA	+
NA	NA .	NA	NA	NG	+
56,2406,874 A	verage = 1612				
NA	tiA	NA	NA	NG	+
NA	NA	NA	NA	NG	+
NA	NA	NA	NA	NG	+
NA	NA	NA	NA	NG	+
NA	NA	NA	NA	NA	NΑ
	Requirements NG NA G NA 56,2406,874 A NA NA NA NA NA NA	Requirements Resistance NG G NA NG G NA NA NA S56,2406,874 Average = 1612 S) NA NA NA	Requirements Resistance Deletion NG G NG NA NG NA G NA G NA NA NA S56,2406,874 Average = 1612 S) NA NA NA NA NA	Requirements Resistance Deletion Violet NG G NG 14.15 mm NA NG NA 16.12 mm G NA G NA NA NA NA NA S66,2406, 874 Average = 1612 NA NA NA NA NA NA	Requirements Resistance Deletion Violet Control NG G NG 14.15 mm NG NA NG NA 16.12 mm NG NA NA NA NA NA NA NA NA NA NG NA NA NA NA NG

G = Growth; NG = No Growth; NT = Not Tested; NA = Not Applicable; WT = Wild Type; (a) + = Expected Response; - = Unexpected Response

Spontaneous Revertants

Strain	Time				Average
TA 100	Beginning	152	116	139	144
TA 100	End	159	157	142	144

Test Inculated By: Sauers, Pulliam, Dacey, Mullen Date 3 June 1981

Test Read By: Sauers, Pulliam Date 5 June 1981

TABLE 2A

Substance assayed:	(1) <u>Code #</u>	77	(2)				
(3)	(4)		(5)			
Date: <u>3 June 1981</u>	Perfor	rmed by: Sa	uers, Pulli	am, Dacey, Mull	en		
Substance dissolved				(3)			
(4)(5)							
Test Compound Concentration	Plate #1		nt Plate Co Plate #3	Average	Background Lawn		
1.0 mg/plate	50	20	4	25	NL_		
10 ⁻¹ mg/plate	92)	! :	98			
10 ⁻² mg/plate	116	126	92	. 111	NLNL		
10 ⁻³ mg/plate	107	122	116	115	NLNL		
10 ⁻⁴ mg/plate	116	124	136	125			
10 ⁻⁵ mg/plate	99	78	78	85	NL		
10 ⁻⁶ mg/plate	88	100	68	85	NL .		
10 ⁻⁷ mg/plate	107	110	119	112			
					1		
				•			
				·			

TABLE 2B

Substance assayed:	(1) <u>Code</u>	#51	(2)					
(3)	(4)		(5)				
Date: 3 June 1981 Performed by: Sauers, Pulliam, Dacey, Mullen								
Substance dissolved in: (1) <u>DMSO</u> (2)(3)								
(4)(5)								
Concentration	Plate #1	Plate #2	Plate #3	Average	<u>Lawn</u>			
1.0 mg/plate	148	155	142	148	NL NL			
10 ⁻¹ mg/plate	148	160	140	149	NL			
10 ⁻² mg/plate	131	159	151	147	NL			
10 ⁻³ mg/plate	103	135	184	141	NL NL			
10 ⁻⁴ mg/plate	184	111	122	139	NL.			
10 ⁻⁵ mg/plate	147	151	128	142	NL			
10 ⁻⁶ mg/plate	159	147	173	160	NLNL			
10 ⁻⁷ mg/plate	153	160	129	147	NL			
				<u></u>				
					•			
								

TABLE 2C

Substance assayed:	(1) <u>Code</u>	#16	(2)					
(3)	(4)(5)							
Date: 3 June 1981	Perfor	med by: Sa	uers, Pulli	am, Dacey, Mul	len			
Substance dissolved in: (1) DMSO (2) (3)								
(4)(5) Visual estimation of background lawn on Nutrient Agar Plates: NG = no growth ST = slight growth NL = normal growth								
			TA 100 nt Plate Co	unt				
Test Compound Concentration	Plate #1	Plate #2	Plate #3		Background Lawn			
1.0 mg/plate	102	108	121	110	NL NL			
10 ⁻¹ mg/plate	130	110	136	125	NL			
10 ⁻² mg/plate	112	132	155	133	NL.			
10 ⁻³ mg/plate	167	135	138_	147	NL			
10 ⁻⁴ mg/plate	122	147	124	131	NL			
10 ⁻⁵ mg/plate	142	151	110	134	NL NL			
10 ⁻⁶ mg/plate	156	149	163	156	NL			
10 ⁻⁷ mg/plate	150	136	138	141	NL NL			
		ļ						

TABLE 2D

Substance assayed:	(1) <u>Code #</u>	47-B	(2)		
(3)	(4)		(5)		-
Date: 3 June 1981	Perfor	med by: Sa	uers, Pullia	um, Dacey, Mul	len
Substance dissolved	in: (1) <u>DM</u>	<u>so</u> (2)		(3)	
(4)(5)		Visua Nutrie	l estimation ent Agar Pla TA 100 nt Plate Cou	NL = nor	flawn on growth ght growth malgrowth
Test Compound Concentration	Plate #1_		Plate #3	Average	Bactground Lawn
1.0 mg/plate	161	138	137	145	1
10 ⁻¹ mg/plate	151	153	170	153	1
10 ⁻² mg/plate	171	167	167	168	NL
10 ⁻³ mg/plate	159	163	164	162	
10 ⁻⁴ mg/plate	124	93	131	116	•
10 ⁻⁵ mg/plate	127	172	156	152	NL
10 ⁻⁶ mg/plate	118	138	154	137	NL
10 ⁻⁷ mg/plate	148	141	162	150	NL
, , and the state of the state					
		<u> </u>		·	
· · · · · · · · · · · · · · · · · · ·					t
					•

TABLE 3

STRAIN VERIFICATION CONTROL

Sensitivity to Sterility / Crystal Violet Control Response (1)	14.80 mm NG +	. 14.75 mm NG +	. 15.30 mm NG +	15.59 mm NG +	. 13.70 NG +	NA H	STERILITY CONTROL	NG Diluent: NG	NG MGA Flate: NG	NG Nutrient Broth: NG	51-NG (d)_77-NG (e)_NA (f)_NA	1 NA = Not Applicable WT = Wild Type	liam, (1) + = expected response - = unexpected response
Ampicillin Resistance UV	*9	*9	NA G*	26.90 mm NG	NA G*	NA G	STERILIT	NG End:	NG End:	NG End:	(b) 16-NG (c) 51-NG	NT = Not Tested	By: Sauers, Pulliam,
Histidine Reguirement	9N	NG	9N	9N	NG	9		Initial:	Initial:	Initial:	(a) 47-B-NG	NG = No Growth	81015
Strains	86	100	1535	1537	1538	TW		His-Bio Mix	Top Agar	S-9 Mix	Test Compound	G = Growth	Study Number:

* Few isolated colonies

TABLE 4

SFONTANEOUS REVERTANT RATE AND POSITIVE CONTROL REVERTANT RATE

Compd	Amount of Compd. Added	S-9 Added	86	100	Strain Number 1535	Number 1537	1538
AF	2 ug/plate	yes	(682,641,525) (616)	(682,641,525) (373,351,308) (616) (344)			(315,493,551) (453)
BF	2 ug/plate	yes	(203,275,147) (208)	(203,275,147) (402,443,391) (208) (412)		(73,78,77) (76)	(131,80,105) (105)
DMBA	20 ug/plate	yes	(32,36,20) (29)	(242,168,188) (199)		(9,12,14) (12)	(16,23,24) (21)
MNNG	2 ug/piate	0 U		(1250,1129,340) (1073)	()		
	20 ug/plate	οu			(934,1043,1080) (1019)	1080)	
Strain	Strain Ferformance						
	Spon tan eous Revertants						
	before after	yes	(12,23,7) (23,11,13)	(95,84,61) (4) (97,74,86) (1)	1,10,14) 0,11,11)	(4,2,3) (2,9,8)	(25,20,23) (24,20,20)
	before after	0U	(27,40,32) ((15,30,13) ((26)	(130,131,61) (1 (61,92,78) (1 (92)	(14,12,7) (14,9,12) (11)	(3,3,4) (6,4,4) (4)	(NG,NG,NG) (11,10,8) (10)
Study Number:	umber: 81015						

By: Sauers, Pulliam, Dacey, Mullen

Date:

TABLE 5A

NUMBER OF PEVERTANTS/FLATE

1538	(21,12,32) (22) (9,25,18) (17)	(18,3,16) (14) (19,29,19)	(12,6,10) (9) (23,29,18) (23) -continued	111en
tumber 1537	(15,11,8) (11) (12,6,12) (10)	(3,11,14) (9) (11,6,8) (8)	(9,5,2) (5) (11,7,5) (8)	By: <u>Sauers, Pulliam, Dacey, Mu</u> l
Strain Number 1535	(16,15,7) (13) (9,9,8) (9)	(11,18,14) (14) (8,12,13) (11)	(25,12,16) (18) (9,10,10) (10)	Sauers, Pull
100	(77,54,66) (66) (77,94,81) (84)	(96,66,65) (76) (104,77,97) (93)	(87,66,72) (75) (95,76,65) (79)	
86	(11,13,21) (15) (11,35,22) (27)	(12,9,27) (16) (22,28,23) (24)	(15, 12, 8) (12) (30, 32, 31) (31)	Date: 21 June 81
S-9 Added	no yes	no yes	no yes	1
Amount of Jompd. Added	ode #77 l mg/plate	0.2 mg/plate	0.04 mg/plate	ember: 81015
Compd.	13de #77	Code #77		Study Nerber:

TABLE 5A, concluded

	1538	(10,12,14) (12)	(20,22,12)		(14,5,16) (12)	(19,20,23)	(15,4,15) (11)	(20,18,29)
	Strain Number 1535 1537	(8,6,5) (6)	(12,7,3) (7)		(11,14,8) (11)	(9,6,5) (7)	(8,8,8) (8)	(5,14,4) (8)
VTE	Strain 1535	(73,62,79) (12,17,17) (8,6,5) (71) (15) (6)	(15,12,7) (11)		(12,11,13) (12)	(8,12,3) (8)	(88,54,85) (7,9,15) (8,8,8) (76) (10) (8)	(14,14,14) (5,14,4) (14) (8)
NUMBER OF REVERTANTS/PLATE	100	(73,62,79) (71)	(86,71,98) (15,12,7) (12,7,3) (85) (7)	,	(88,62,93) (12,11,13) (11,14,8) (81) (12) (11)	(80,74,104) (8,12,3) (86)	(88,54,85) (76)	(93,99,62) (85)
NUMBER OF R	86	(16,16,12) (15)	(19,24,25) (23)		(9,18,18) (15)	(16,42,23)	(14,8,11) (11)	(28,24,36) (29)
	S-9 Added	00	yes		no	yes	no	yes
	Amount of Compd. Added				0.0016 mg/plate		0.00032 mg/plate	
	Amount Compd. Compd.	Code #77			Code #77		Code #77 0.00032	

By: Sauers, Pulliam, Dacey, Mullen

Date: 21 Jun 81

Study Number: 81015

TABLE 5B NUMBER OF REVERTANTS/PLATE

								ı
1538	(13,16,16) (15)	(7,28,10) (15)	(7,12,10) (10)	(47,31,26) (35)	(3,11,8)	(18,11,16) (15)	-continued	, Mullen
Number 1537	(4,7,1) (4)	(4,8,7)	(4,8,10) (7)	(5,9,4)	(4,5,6) (5)	(10,3.6)		Sauers, Pulliam, Dacey, Mullen
Strain 1 1535	(73,62,81) (11,15,6) (74) (11)	(98,128,117) (11,13,10) (114) (11)	(8,15,12) (12)	(12,8,8) (9)	(11,7,9) (9)	(12,5,13) (10)		Sauers, P
100	(73,62,81) (74)	(98,128,117) (114)	(67,66,79) (71)	(87,34,86) (86)	(63,81,88) ((77)	(86,135,116) (12,5,13) (112) (10)		ine 81 By:
p 98	(12,10,4)	(22,16,21) (20)	(5,7,11) (8)	(15,30,14) (20)	(17,12,5)	(12,15,16) (14)		Date: 21 June 81
S-3 Added	ou	yes	Ou	yes	0u	yes		1
Amount of Compd. Acced	Code #51 l mg/plate		0.2 mg/plate		0.04 mg/plate			m.br: 31015
Compd.	Code #51		Code #51 0.2 mg/pl		Code #51 0.04 mg/p			Study Number:

TABLE 5B, concluded

NUMBER OF REVERTANTS /FLATE

yes 0.0016 mg/plate no yes
0.00032 mg/plate no

By: Sauers, Pulliam, Dacey, Mullen

Date: 21 June 31

Stucy Number: 81015

TABLE 5C

NUMBER OF REVERTANTS/PLATE

no (12,8,12) (11) yes (6,18,3)
((

TABLE 5C, concluded

NIMBER OF REVERTANTS/FLATE

		_	
1538	(10,6,4) (7) (NG)	(10,14,8) (11) (15,28,23) (22)	(19,11,12) (14) (8,15,13) (12)
Number 1537	(2,5,3) (3) (1,NG,NG) (NG)	(3,1,6) (3) (5,6,7) (6)	(3.2,4) (3) (7,6,7) (7) (7)
Strain Nu 1535	(8,11,12) (10) (NG) (NG)	(11,12,9) (11) (5,7,10) (7)	(11,25,13) (3,2,4) (19, (16) (3) (3) (8,12,11) (7,6,7) (8, (10) (7) (7)
100	(65,91,59) (72) (NG) (NG)	(42,50,59) (50) (80,103,84) (89)	(61) (61) (6,75,99) (74)
86	(11,14,11) (12) (14,12,12) (13)	(7,6,15) (9) (14,20,13) (17)	(7,20,3) (8 (10) (10,24,18) (5 (17)
S-9 Added	no yes	no yes	s
Amount of Compd. Added	0.008 mg/plate	0.0016 mg/plate	0.00032 mg/plate no ye urber: 81015
Compd.	Code #16	Code #16	Code #16 0.000

 16 = no growth response; probably a technical error.

TABLE 50

NUMBER OF REVERTANTS/FLATE

1538	(7,10,3) (7) (6,7,3)	(5) (9,7,8) (8)	(17,25,14) (19)	(9,2,3) (5)	(7,2,3) (4)	-continued	lullen
umber 1537	(6,3,2) (4) (3,7,4)	(5) (5,4,4) (5)	(5,2,3) (3)	(2,3,4) (3)	(3,3,1) (2)		Sauers, Pulliam, Dacey, Mullen
Strain Number	(8,10,9) (9) (8,4,9)	(7) (22,23,12) (19))(5,8,12) (8)	(7,8,5) (7)	(6,7,5) (6)		Sauers, Pull
100	(56,113,65) (8,10,9) (77) (101,31,66) (8,4,9)	(83) (99,105,83) (22,23,12) (96)	(101,124,111)(5,8,12) (112)	(60,54,62) (7,8,5) (59) (7)	(88,113,86) (6,7,5) (96) (6)		81 By:
m S	(7,9,3) (6) (37,11,14)	(8,20,20) (16)	(20,18,26) (21)	(8,13,8)	$\binom{17,20,21}{(19)}$		Date: 21 June 81
7 7	ر د د د د د د د د د د د د د د د د د د د	Ou	yes	00	yes		-
	7-8 ' slate	7-3 0.2 mg/plate		7-B 0.04 mg/plate			Study Number: 81015
• • • • •	3ode = 17-8	Code =47-3		Code #47-B			Study

TABLE 5D, concluded

NUMBER OF REVERTANTS/FLATE

1538	(8,5,2) (5)	(16,3,1)	(6,8,3)	(18,26,21)	(15.8,8)	(65,22,21)
Number 1537	(2,5,4) (4)	(2,3,4)	(4,3,3) (3)	(4,7,8)	(7,8,1)	(9,3,9)
Strain N 1535	(12,6,12) (10)	(3,10,16) (10)	(6,14,14) (11)	(14,4,1) (6)	(9,19,10) (13)	(10,4,9)
100	(61,64,68) (64)	(77,95,101) (91)	(81,60,55) (65)	(107,81,76) (88)	(57,59,51) (56)	(54,82,44)
86	(14,14,5) (11)	(14,24,14) (17)	(8,18,3) (10)	(21,15,27)	(11,10,18)	(43,30,26)
S-9 AddeJ	ou 0	yes	00	yes	re no	yes
Amount of Compd. Added	0.008 mg/plate no		0.0016 mg/plate no		0.00032 mg/plate	
Compd. (Code -47-B 0.008		Code =47-B 0.0016		Code =47-8 0.00032	

Sauers, Pulliam, Dacey, Mullen

Date: 21 June 31

Study Number:

TABLE 6A

MUTAGENIC ACTIVITY RATIO

Substance Assayed: Code #77 Dissolved in: DMSO

Study Number: 81015 Date: 16 July 1981 By: Sauers

Concentration	Strain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA 98	0.48	*	0.008 mg/plate	TA 1535	0.09	0.26
9.2 mg/plate	TA 98	0.36	*	0.0016 mg/pl.	TA 1535	*	0.06
0.04 mg/plate	TA 98	0.65	*	0.00032 mg/p1.	TA 1535	0.36	*
0.008 mg/plate	TA 98	0.32	*				
0.0016 mg/plate	TA 98	0.48	*	1.0 mg/plate	TA 1537	0.77	1.08
0.00032 mg/pl.	TA 98	0.57	*	0.2 mg/plate	TA 1537	0.46	0.77
				0.04 mg/plate	TA 1537	0.46	0.15
1.0 mg/plate	TA 100	0.01	*	0.008 mg/plate	TA 1537	0.31	0.31
0.2 mg/plate	TA 100	0.09	*	0.0016 mg/pl.	TA 1537	0.31	1.08
0.04 mg/plate	TA 100	*	*	0.00032 mg/pl.	TA 1537	0.46	0.62
0.008 mg/plate	ì	0.02	*				
0.0016 mg/v1.		0.03	*	1.0 mg/plate	TA 1538	*	0.84
0.00032 mg/pl.			*	0.2 mg/plate	TA 1538	*	0.28
				0.04 mg/plate	TA 1538	0.05	*
1.0 mg/plate	TA 1535	*	0.13	0.008 mg/plate	TA 1538	*	0.14
0.2 mg/plate	TA 1535	1	0.19	0.00016 mg/pl.	TA 1538	*	0.14
0.04 mg/plate		1	0.45	0.00032 mg/p1.	TA 1538	*	0.07

(act): S=9 fraction was added

The calculated value resulted in a negative MUTAR or zero MUTAR

TABLE 6B
MUTAGENIC ACTIVITY RATIO

Substance	Assayed:	Code #51	_ Dissolved	l in:	DMS	0
Study Numl	oer: <u>810</u>	15 Da	te: <u>16 July</u>	1981	Ву:	Sauers

woncentration	Str	ain	MUTAR (act)	MUTAR	Concentration	Strain	MULAR Cact	MUTAR
1.0 mg/plate	ΙA	98	0.20	*	0.008 mg/plate	TA 1535	*	*
0.2 mg/plate	TA	98	0.20	*	0.0016 mg/pl.	TA 1535	*	0.19
0.04 mg/plate	TA	98	*	*	0.00032 mg/p].	TA 1535	*	U.U6
0.008 mg/plate	TA	9 8	0.20	*				
0.0016 mg/pl.	TA	98	0.24	*	1.0 mg/plate	TA 1537	0.15	*
0.00032 mg/pl.	TA	98	0.61	*	0.2 mg/plate	TA 1537	0.15	0.46
					0.04 mg/plate	TA 1537	} <u>;0.15</u>	0.15
1.0 mg/plate	TA	100	0.29	*	0.008 mg/plate	TA 1537	0.31	*
0.2 mg/plate	TA	100	0.03	*	0.0016 mg/plate	TA 1537	0.62	*
0.04 mg/plate	TA	100	0.27	*	0.00032 mg/p1.	TA 1537	0.31	2.0
0.008 mg/plate	TA	100	*	*				
0.0016 mg/pl.	TA	100	0.13	*	1.0 mg/plate	TA 1539	*	0.35
0.00032 mg/pl.	TA	100	*	*	0.2 mg/plate	TA 1538	0.69	*
					0.04 mg/plate	TA 1538	*	*
1.0 mg/plate	TA	1539	0.06	*	0.008 mg/plate	TA 1538	*	0.28
D.2 mg/plate	TA	1539	*	0.06	0.0016 mg/pl.	TA 1538	3 0.05	0.35
0.04 mg/plate	TA	153	5 *	*	0.00032 mg/p1.			0.07

⁽act): 5-9 fraction was added

TABLE 6C
MUTAGENIC ACTIVITY RATIO

Substance Assa	ryed: <u>Code #16</u>	D	Dissolved	in:	<u>DMSO</u>	
Study Number:	81015	Date:	16 July	<u> 198</u> 1	Ву:	Sauers

Concentration	Strain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA 98	*	*	0.008 mg/pl.	TA 1535	*	*
0.2 mg/plate	TA 98	0.04	*	0.0016 mg/pl.	TA 1535	*	*
0.04 mg/plate	TA 98	0.32	*	0.00032 mg/p1.	TA 1535	*	0.32
0.008 mg/p1.	TA 98	*	*				
0.0016 mg/pl.	TA 98	0.08	*	1.0 mg/plate	TA 1537	*	*
0.00032 mg/pl.	TA 98	0.08	*	0.2 mg/plate	TA 1537	*	0.15
				0.04 mg/plate	TA 1537	*	*
1.0 mg/plate	TA 100	0.05	*	0.008 mg/p1.	TA 1537	*	*
0.2 mg/plate	TA 100	0.08	*_	0.0016 mg/pl.	TA_1537_	0.15	*
0.04 mg/plate	TA 100	0.04	*	0.00032 mg/pl	TA 1537	0.31	*
0.008 mg/plate	TA 100	*	*				
0.0016 mg/pl.	TA 100	0.06	*	1.0 mg/plate	TA 1538	*	0.77
0.00032 mg/pl.	TA_100	*	*	0.2 mg/plate		0.16	*
				0.04 mg/plate	TA 1538	*	0.14
1.0 mg/plate	TA 153	5 *	*	0.008 mg/pl.	TA 1538	*	*
0.2 mg/plate	TA 153	5 *	0.26	0.0016 mg/pl.		*	0.07
0.04 mg/plate	TA 153	5 *	*	0.00032 mg/pl		*	0.28

⁽act): S-9 fraction was added

 $[\]dot{\boldsymbol{x}}$: calculated value resulted in a negative MUTAR or zero MUTAR

TABLE 6D

MUTAGENIC ACTIVITY RATIO

Study Number: 81015 Date: 16 July 1981 By: Sauers

Concentration	Sti	cain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA	98	0.24	*	0.008 mg/plate	TA 1535		*
0.2 mg/plate	TA	98	0.24	*	0.0016 mg/pl.	TA 1535	*	*
0.04 mg/plate	TA	98	0.16	*	0.00032 mg/pl	TA 1535	*	0.13
0.008 mg/plate	TA	98	0.08	*				
0.0016 mg/p1.	TA	98	0.24	*	1.0 mg/plate	TA 1537	*	*
0.00032 mg/p1.	TA	98	0.73	*	0.2 mg/plate	TA 1537	*	0.15
					0.04 mg/plate	TA 1537	*	*
1.0 mg/plate	TA	100	*	*	0.008 mg/plate	TA 1537	*	*
0.2 mg/plate	TA	100	0.27	0.04	0.0016 mg/pl.	TA 1537	0.15	*
0.04 mg/plate	TA	100	0.12	*	0.00032 mg/pl.	TA 1537	0.31	0.15
0.008 mg/plate	TA	100	0.07	*				
0.0016 mg/p1.	TA	100	0.05	*	1.0 mg/plate	TA 1538	*	*
0.00032 mg/pl.	TΑ	100	*	*	0.2 mg/plate	TA 1538	*	*
					0.04 mg/plate	TA 1538	*	*
1.0 mg/plate	TA	1535	*	*	0.008 mg/plate	TA 1538	*	*
0.2 mg/plate	TΑ	1535	*	0.52	0.0016 mg/pl.	TA 1538		*
0.04 mg/plate	TA	53	5 *	*	0.00032 mg/p1.	TA 1538	0.75	*

(act): S-9 fraction was added

 $\dot{\gamma}$: calculated value resulted in a negative MUTAR or zero MUTAR

OFFICIAL DISTRIBUTION LIST

(12 copies)

Comander

US Army Medical Research and Development Command

ATTN: SGRD-SI/ Mrs. Madigan Fort Detrick, Frederick MD 21701

Defense Technical Information Center

ATTN: DTIC-DDA Cameron Station Alexandria VA 22314

Director of Defense Research and Engineering ATTN: Assistant Director, Environmental and

Life Sciences Washington DC 20301

The Surgeon General ATTN: DASG-TLO Washington DC 20314

HQ DA (DASG-ZXA) WASH DC 20310

Superintendent

Academy of Health Sciences

ATTN: AHS-COM

Fort Sam Houston TX 78234

Assistant Dean

Institute and Research Support

Uniformed Services University of Health Sciences

6917 Arlington Road Bethesda MD 20014

Commander

US Army Environmental Hygiene Agency Aberdeen Proving Ground MD 21070

US Army Research Office

ATTN: Chemical and Biological Sciences Division

P.O. Box 1221

Research Triangle Park NC 27709

Biological Sciences Division Office of Naval Research Arlington VA 22217

Director of Life Sciences

USAF Office of Scientific Research (AFSC)

Bolling AFB

Washington DC 20332

Director

Walter Reed Army Institute of Research

Washington DC 20012

Commander

US Army Medical Research Institute of Infectious

Diseases

Fort Detrick, Frederick MD 21701

Commander

US Army Research Institute of Environmental

Medicine

Natick MA 01760

Commander

US Army Institute of Surgical Research

Brooke Army Medical Center Fort Sam Houston TX 78234

Commander

US Army Institute of Dental Research

Washington DC 20012

Commander

US Army Medical Bioengineering

Research and Development Laboratory

Fort Detrick, Frederick MD 21701

Commander

US Army Aeromedical Research Laboratory

Fort Rucker AL 36362

Commander

US Army Biomedical Laboratory

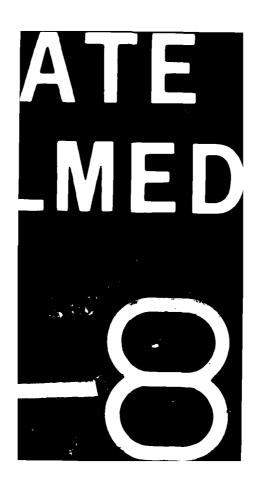
Aberdeen Proving Ground

Edgewood Arsenal MD 21010

Commander

Naval Medical Research Institute

National Naval Medical Center


Bethesda MD 20014

Commander

USAF School of Acrospace Medicine

Aerospace Medical Division

Brooks Air Force Base TX 78235

